49 research outputs found

    Differentiation in Neuroblastoma: Diffusion-Limited Hypoxia Induces Neuro-Endocrine Secretory Protein 55 and Other Markers of a Chromaffin Phenotype

    Get PDF
    Background: Neuroblastoma is a childhood malignancy of sympathetic embryonal origin. A high potential for differentiation is a hallmark of neuroblastoma cells. We have previously presented data to suggest that in situ differentiation in tumors frequently proceeds along the chromaffin lineage and that decreased oxygen ( hypoxia) plays a role in this. Here we explore the utility of Neuro-Endocrine Secretory Protein 55 ( NESP55), a novel member of the chromogranin family, as a marker for this process.Methodology/Principal Findings: Immunohistochemical analyses and in situ hybridizations were performed on human fetal tissues, mouse xenografts of human neuroblastoma cell lines, and on specimens of human neuroblastoma/ganglioneuroma. Effects of anaerobic exposure on gene expression by cultured neuroblastoma cells was analyzed with quantitative real-time PCR. Fetal sympathetic nervous system expression of NESP55 was shown to be specific for chromaffin cell types. In experimental and clinical neuroblastoma NESP55 immunoreactivity was specific for regions of chronic hypoxia. NESP55 expression also correlated strikingly with morphological evidence of differentiation and with other chromaffin-specific patterns of gene expression, including IGF2 and HIF2 alpha. Anaerobic culture of five neuroblastoma cell lines resulted in an 18.9-fold mean up-regulation of NESP55.Conclusions/Significance: The data confirms that chronic tumor hypoxia is a key microenvironmental factor for neuroblastoma cell differentiation, causing induction of chromaffin features and NESP55 provides a reliable marker for this neuronal to neuroendocrine transition. The hypoxia-induced phenotype is the predominant form of differentiation in stroma-poor tumors, while in stroma-rich tumors the chromaffin phenotype coexists with ganglion cell-like differentiation. The findings provide new insights into the biological diversity which is a striking feature of this group of tumors

    Multimodal behavioral treatment of migraine: An Internet-administered, randomized, controlled trial

    Get PDF
    Introduction. Multimodal approaches in behavioral treatment have gained recent interest, with proven efficacy for migraine. The utility of the Internet has been demonstrated for behavioral treatment of headache disorders, but not specifically for migraine. The aim of the study was to develop and evaluate an Internet-based multimodal behavior treatment (MBT) program for migraine and to test hand massage treatment as an adjunct. Methods. Eighty-three adults, 58 women and 25 men, with at least two migraine attacks a month were recruited via advertisements. An MBT program aiming at improvements in life-style and stress coping was developed for this study and, together with a diary, adapted for use over the Internet. Participants were randomized to MBT with and without hand massage and to a control group, and were followed for 11 months. Questionnaires addressing issues of quality of life (PQ23) and depressive symptoms (MADRS-S) were used. Results. A 50%, or greater, reduction in migraine frequency was found in 40% and 42% of participants of the two groups receiving MBT (with and without hand massage, respectively), who statistically were significantly more improved than participants in the control group. No effect of hand massage was detected, and gender did not show any independent contribution to the effect in a multivariate analysis. Conclusions. MBT administered over the Internet appears feasible and effective in the treatment of migraine, but no effect of hand massage was found. For increased knowledge on long-term effects and the modes of action of the present MBT program, further studies are needed

    Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors

    Get PDF
    The differentiation stage of tumors is a central aspect in the histopathological classification of solid malignancies. The differentiation stage is strongly associated with tumor behavior, and generally an immature tumor is more aggressive than the more differentiated counterpart. While this is common knowledge in surgical pathology, the contribution of differentiation-related gene expression and functions to tumor behavior is often overlooked in the experimental, tumor biological setting. The mechanisms by which tumor cell differentiation stages are perturbed or affected are poorly explored but have recently come into focus with the introduction.of the tumor stem cell concept. While developmental biologists view the differentiation as a unidirectional event, pathologists and tumor biologists have introduced the concept of dedifferentiation to explain phenotypic changes occurring in solid tumors. In this review we discuss the impact of the tumor cell differentiation stage as used in surgical pathology. We further discuss knowledge gained from exploring the molecular basis of the differentiation and dedifferentiation processes in neuroblastoma and breast cancer, two tumor forms where the tumor cell differentiation concept is used in the clinical diagnostic work and where the tumor stem cell theory has been applied

    Multi-Class Clustering of Cancer Subtypes through SVM Based Ensemble of Pareto-Optimal Solutions for Gene Marker Identification

    Get PDF
    With the advancement of microarray technology, it is now possible to study the expression profiles of thousands of genes across different experimental conditions or tissue samples simultaneously. Microarray cancer datasets, organized as samples versus genes fashion, are being used for classification of tissue samples into benign and malignant or their subtypes. They are also useful for identifying potential gene markers for each cancer subtype, which helps in successful diagnosis of particular cancer types. In this article, we have presented an unsupervised cancer classification technique based on multiobjective genetic clustering of the tissue samples. In this regard, a real-coded encoding of the cluster centers is used and cluster compactness and separation are simultaneously optimized. The resultant set of near-Pareto-optimal solutions contains a number of non-dominated solutions. A novel approach to combine the clustering information possessed by the non-dominated solutions through Support Vector Machine (SVM) classifier has been proposed. Final clustering is obtained by consensus among the clusterings yielded by different kernel functions. The performance of the proposed multiobjective clustering method has been compared with that of several other microarray clustering algorithms for three publicly available benchmark cancer datasets. Moreover, statistical significance tests have been conducted to establish the statistical superiority of the proposed clustering method. Furthermore, relevant gene markers have been identified using the clustering result produced by the proposed clustering method and demonstrated visually. Biological relationships among the gene markers are also studied based on gene ontology. The results obtained are found to be promising and can possibly have important impact in the area of unsupervised cancer classification as well as gene marker identification for multiple cancer subtypes

    Loss of imprinting of IGF2 correlates with hypermethylation of the H19 differentially methylated region in hepatoblastoma

    Get PDF
    IGF2, a maternally imprinted foetal growth factor gene, is implicated in many childhood tumours including hepatoblastoma (HB); however, the genetic and epigenetic alterations have not comprehensively been studied. We analysed the methylation status of the H19 differentially methylated region (DMR), loss of heterozygosity (LOH) and allelic expression of IGF2 in 54 HB tumours, and found that 12 tumours (22%) with LOH, 9 (17%) with loss of imprinting (LOI) and 33 (61%) with retention of imprinting (ROI). Biallelic and monoallelic IGF2 expressions correlated with hypermethylation and normal methylation of H19 DMR, respectively, in two tumours with LOI and seven tumours with ROI. Quantitative RT–PCR analysis showed minimal expression of H19 mRNA and substantial expression of IGF2 mRNA in tumours with LOH or LOI, and substantial expression of both H19 and IGF2 mRNAs in tumours with ROI. Increased IGF2 expression with predominant embryonic P3 transcript was found in the majority of HBs with ROI and foetal livers. In contrast to the earlier reports, our findings suggest that the disruption of the enhancer competition model reported in Wilms' tumour may also occur in HB. Both frequencies of LOH and LOI seem to be lower in HB than in Wilms' tumour, reflecting the different tissue origins

    Electrochemically synthesized polymers in molecular imprinting for chemical sensing

    Get PDF
    This critical review describes a class of polymers prepared by electrochemical polymerization that employs the concept of molecular imprinting for chemical sensing. The principal focus is on both conducting and nonconducting polymers prepared by electropolymerization of electroactive functional monomers, such as pristine and derivatized pyrrole, aminophenylboronic acid, thiophene, porphyrin, aniline, phenylenediamine, phenol, and thiophenol. A critical evaluation of the literature on electrosynthesized molecularly imprinted polymers (MIPs) applied as recognition elements of chemical sensors is presented. The aim of this review is to highlight recent achievements in analytical applications of these MIPs, including present strategies of determination of different analytes as well as identification and solutions for problems encountered
    corecore